
Analysis of Interacting BPEL Web Services

Xiang Fu
fuxiang@cs.ucsb.edu

Tevfik Bultan
bultan@cs.ucsb.edu

Jianwen Su
su@cs.ucsb.edu

Department of Computer Science
University of California

Santa Barbara, CA 93106-5110

ABSTRACT
This paper presents a set of tools and techniques for analyz-
ing interactions of composite web services which are speci-
fied in BPEL and communicate through asynchronous XML
messages. We model the interactions of composite web ser-
vices as conversations, the global sequence of messages ex-
changed by the web services. As opposed to earlier work,
our tool-set handles rich data manipulation via XPath ex-
pressions. This allows us to verify designs at a more de-
tailed level and check properties about message content. We
present a framework where BPEL specifications of web ser-
vices are translated to an intermediate representation, fol-
lowed by the translation of the intermediate representation
to a verification language. As an intermediate representa-
tion we use guarded automata augmented with unbounded
queues for incoming messages, where the guards are ex-
pressed as XPath expressions. As the target verification lan-
guage we use Promela, input language of the model checker
SPIN. Since SPIN model checker is a finite-state verifica-
tion tool we can only achieve partial verification by fixing
the sizes of the input queues in the translation. We propose
the concept of synchronizability to address this problem. We
show that if a composite web service is synchronizable, then
its conversation set remains same when asynchronous com-
munication is replaced with synchronous communication.
We give a set of sufficient conditions that guarantee syn-
chronizability and that can be checked statically. Based on
our synchronizability results, we show that a large class of
composite web services with unbounded input queues can be
completely verified using a finite state model checker such as
SPIN.
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1. INTRODUCTION
A fundamental goal of web services is to have a collection

of network-resident software services accessible via standard-
ized protocols, whose functionality can be automatically dis-
covered and integrated into applications or composed to
form more complex services. While several established and
emerging standards bodies (e.g., [19, 24, 2, 23, 8] etc.) are
rapidly laying out the foundations that the industry will
build upon, there are many research challenges behind web
services that are less well-defined and understood [13]. This
paper attempts to address the aspect of “global behaviors”
of interacting web services.

At an elementary level, a web service is composed of “ac-
tivities” whose execution performs tasks of interest, and
“messages” that enable the service to participate in a more
complex web service. Activities resemble traditional pro-
grams; messages are necessary to allow individual web ser-
vices to interact with each other while maintaining their
autonomy. Our objective is to understand the role of mes-
saging in composing web services and to develop tools for
analyzing interactions of composite web services.

In our earlier work [5, 11], we introduced a global behavior
model for interacting web services based on their “conver-
sations”, i.e., the global sequence of messages recorded in
the order in which they are sent. Such message-oriented be-
havior modeling is not only simple, but more importantly,
it requires web services to reveal the least amount of infor-
mation that is necessary to make meaningful compositions.
Thus complex internal states (e.g. in legacy systems) can
be hidden. Interestingly, conversations immediately permit
temporal properties to be expressed on and verified against
composite web services.

A top-down specification approach based on conversation
protocols was proposed in [5, 11]. A conversation protocol
is a finite state automaton which specifies the desired set
of conversations of a composite web service. The model
used in [5, 11] does not have message contents and hence,
abstracts away the data semantics. To capture data seman-
tics, in our technical report [10], we developed the notion
of a guarded automaton. Each transition of a guarded au-
tomaton is equipped with a guard that is expressed using
an XPath [26] expression. The use of XPath expressions as
guards allows us to express the manipulation of XML mes-
sage contents in a conversation protocol.

Contrary to the top-down specification approach adopted
in [5, 10, 11], this paper studies the bottom-up composi-
tion of BPEL [2] web services, and makes the following new
contributions:
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Figure 1: Web Service Standards Stack

1. To facilitate the translation of BPEL web services, we
extend the guarded automata model in [10] by allowing
the use of local XML variables in a guarded automa-
ton. We develop a tool which translates BPEL web
services to this extended guarded automata model.

2. We further extend the translation tool developed in
[10] from guarded automata to Promela, the input lan-
guage for the SPIN model checker [12]. The extension
handles local variables in guarded automata, and sup-
ports asynchronous messaging with input queues. (In
[10] a composite web service is specified in a top-down
fashion starting with a single guarded automaton and
input queues are not handled in the translation.) The
combination of the two translation tools allows us to
model check properties of BPEL web services without
abstracting away their data semantics.

3. We develop sufficient conditions for the equivalence
of conversations under synchronous and (the usual)
asynchronous communication semantics. We demon-
strate that “synchronizable” composite web services
allow “complete” and more efficient verifications. We
present an improvement to the autonomy condition.
With a slight modification this result can also improve
the realizability conditions given in [11].

Our results form a framework for developing analysis, ver-
ification, and design tools for web services. In particular,
the use of the guarded automata model as an intermediate
representation for composite web services results in a mod-
ular and extensible architecture for our web service anal-
ysis tool: multiple web service specification languages can
be supported at the front-end, and various model checking
tools (as well as the synchronizability analysis introduced in
this paper) can be employed at the back-end.

The rest of the paper is organized as follows. Section 2 dis-
cusses general notions of web services and interaction mod-
els, which provides the context for the technical problems
discussed in this paper. Section 3 defines a formal model for
the technical development. Section 4 presents two transla-
tion algorithms from BPEL to guarded automata, and from
guarded automata to Promela, respectively. Section 5 im-
proves the results presented in Section 4 by proposing the
notion of synchronizability, and gives sufficient conditions
for synchronizability. Finally Section 6 concludes the paper.

2. WEB SERVICE INTERACTIONS
Figure 1 displays the stack of standards for web services

where XML [25] sits as the foundation. Since communi-
cating web services can be deployed on different locations
using different implementation platforms, agreeing on a set

Assessor
LoanProcess

WSDL
BPEL

Figure 2: WSDL Ports and BPEL Web Services

of standards for data transmission and service descriptions
is clearly very important. Web services interact with each
other using XML messages. XML Schema [27] provides es-
sentially the type system for XML messages. Communica-
tion protocols such as SOAP [19] can then be used to trans-
mit XML messages. The interfaces of web services can be
described in WSDL [24] which, most importantly, defines
the ports that web services can connect to in order to inter-
act with each other. Although a WSDL specification defines
the public interface of a web service, it does not provide any
information about its behavior. Behavioral descriptions of
web services can be defined using higher level standards such
as BPEL [2], WSCI [23], BPML [3], DAML-S [8], etc. Web
service development based on these standards is supported
by different (and competing) implementation platforms such
as .Net [21] and J2EE [15].

Consider a loan processing service (similar to the exam-
ple in [2]) that consists of services for loan processing, risk
assessment, etc., and a customer process. For example, the
interface of the web service for risk assessment can be de-
fined using WSDL (“Assessor” in Figure 2). The WSDL
specification for the risk assessment service defines a port
that a loan processing service can connect to. The loan pro-
cessing service in Figure 2 (right) provides not only a WSDL
port for the customer process to connect, but it also spec-
ifies the behavior of the loan processing service in BPEL,
describing how it interacts with other services including the
risk assessment service.

One can use pre- and post-conditions to associate behav-
ioral descriptions for “atomic” web services that are speci-
fied in WSDL [17]. These pre- and post-conditions can be
used to reason about the composed behaviors of web services
[13]. However, BPEL provides more expressive behavioral
descriptions. BPEL not only allows manipulation of XML
data structures using XPath expressions [26], but also pro-
vides programming constructs such as sequence, conditional
and case statements, parallelism, and loops.
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Figure 3: Interacting BPEL Web Services
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Figure 4: A Simple Example Demonstrating Our
Model

Figure 3 shows a part of the composite loan processing
web service that includes LoanProcess, Assessor, and Cus-
tomer. The individual services may be specified in BPEL or,
in simple cases, WSDL. The directed edges represent the
communication links among the individual services. Note
that Assessor may contact Customer directly. As a result,
there is no single web service that can keep track of the
“global” state of the service execution (i.e., there is no me-
diator process as described in [13]). Clearly, analyzing inter-
actions of such web services presents a great challenge due
to their distributed behavior [13].

Our goal in this paper is to analyze and verify proper-
ties of composite web services consisting of multiple BPEL
web services communicating asynchronously such as the one
shown in Figure 3.

3. A FORMAL MODEL FOR
INTERACTING WEB SERVICES

In this section, we give a formal model for composite
web services which consists of multiple peers communicating
with asynchronous messaging. Figure 4 gives an informal il-
lustration of our conversation based model. A composite
web service consists of a conversation schema that specifies
the set of peers and the messages transmitted among peers,
and a set of guarded automata specifying the behavior of
each individual peer. As communication among web ser-
vices is asynchronous, each peer is equipped with a FIFO
queue to store incoming messages. We assume that there
is a virtual watcher which records the sequence of messages
as they are sent by the peers. The sequence of messages
recorded by the watcher is called a conversation. (Note that
the virtual watcher is a construct we use to reason about
the interactions among different peers and it is not imple-
mented.) A conversation can be regarded as a linearization
of the message events, similar to the approach used in defin-
ing the semantics of Message Sequence Charts [16] in [1].

Formally, a composite web service is a tuple S = 〈(P,M),
A1, . . . ,An〉, where (P,M) is a conversation schema, n =
|P | and each Ai is an implementation for peer pi ∈ P . A
conversation schema is a pair (P,M) where P is a finite set
of peers andM is a finite set of message types. Each message
type c ∈ M is transmitted between only one pair of peers.

In our model, messages are XML documents and types of
messages correspond to XML Schemas. For each message
type c ∈ M , let dom(c) denote all the XML documents that
are of type c. Given a set of message types M , we define
the message alphabet as Σ =

�
c∈M

{c} × dom(c). Each
element m ∈ Σ is called a message. Let type(m) ∈ M
denote the type of message m. We say that m is an instance
of type(m).

3.1 Guarded Automata Peers
For each peer pi, its implementation Ai is a guarded au-

tomaton (M in
i ,Mout

i , Li, Ti, si, Fi,∆i), where M in
i (Mout

i )
are incoming (outgoing) message types for pi, Li is the set
of local variables for pi, and Ti, si, Fi are the set of states,
the initial state, and the set of final states, respectively. Like
messages, we assume that local variables are also XML doc-
uments. For each local variable l ∈ Li, we use dom(l) to
denote all the XML documents that match to the type dec-
laration of l. Similar to message types, the types of local
variables also correspond to XML Schemas.

Each transition τ ∈ ∆i of the guarded automaton for the
peer pi has a source state q1 ∈ Ti and a destination state
q2 ∈ Ti and is in one of the following three forms:

1. local-transition, τ = (q1, g, q2), where g is the transi-
tion guard. The transition changes the state of the
automaton from q1 to q2 and updates the local vari-
ables based on the guard g.

2. receive-transition, τ = (q1, ?a, q2), where a ∈ M in
i .

The transition changes the state of the automaton
from q1 to q2 and removes the received message (of
type a) from the input queue of peer pi.

3. send-transition, τ = (q1, (!b, g), q2), where b ∈ Mout
i

and g is the transition guard. The transition changes
the state of the automaton from q1 to q2 and appends
the sent message (of type b) to the input queue of the
receiving peer.

Note that, sent messages are not received (consumed) syn-
chronously, rather, they are instantaneously appended to
the appropriate input queue. A message is received only
after it moves to the head of the input queue.

A guard consists of a guard condition and a set of as-
signments. A send- or local-transition is taken only if the
guard condition evaluates to true, and receive-transitions
have no guards because they simply consume a message
from the head of the input queue. If the transition is a
send-transition, then the assignments of the guard specify
the contents of the message that is being sent. If the transi-
tion is a local-transition, then the assignments of the guard
update the values of the local variables.

Given a send-transition τ = (s, (!b, g), t) where peer pi is
the sender for the message type b, guard g is a predicate of

the following form: g(m, ~m × ~l ), where m is the message
being sent, the vector ~m contains the last instance of each
message type that is received or sent by peer pi (i.e., M in

i ∪

Mout
i ) and ~l represents the values of the local variables in

Li.
Given a local-transition τ = (s, g, t) for peer pi, guard g

is a predicate of the following form: g(~l, ~m × ~l ), where ~m

and ~l are as described above, and the first vector denotes
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the values of the local variables immediately after the tran-

sition τ is executed, and ~m × ~l denotes the values of the
messages and the local variables just before the transition τ
is executed.

3.2 Conversations
As explained above, in our model of a composite web ser-

vice, each peer has a queue for all of its input messages and
may send messages to the input queues of other peers. To
model the global behavior of the composite web service we
define a virtual watcher that records the sequence of mes-
sages as they are sent by the peers [5].

Formally, given a composite web service S = 〈(P,M),
A1, . . . ,An〉, a global configuration of S is a (3n+3)-tuple of

the form (Q1,~l1, t1, ..., Qn,~ln, tn, w,~s, ~r) where

• for each j ∈ [1..n], Qj ∈ Σ∗ is the content of the input

queue of peer pj , the vector ~lj denotes the values of
the local variables of pj , tj is the state of pj , and

• w ∈ Σ∗ is the sequence of messages recorded by the
global watcher, and

• message vectors ~s and ~r record the latest sent and
received instances (resp.) for each message type.

It is straightforward to define a derivation relation between
two configurations based on the transition relations of the
peers such that γ → γ′ if and only if there exists a peer pi

and a transition τ ∈ ∆i such that executing the transition τ
in configuration γ results in the configuration γ′ [11]. Note
that each send operation appends the message 1) to the
input queue of the receiver and 2) to the global watcher at
the same time.

A run of S is a finite sequence of configurations γ = γ0,

γ1, γ2, ..., γ|γ|−1 that satisfies the following conditions: 1)

γ0 = (ε,~⊥, s1, ..., ε, ~⊥, sn, ε, ~⊥, ~⊥) is the initial configura-
tion, where si is the initial state of pi for each i ∈ [1..n]

and ~⊥ denotes uninitialized messages and local variables;
2) for each 0 ≤ i < |γ| − 1, γi → γi+1; and 3) γ|γ|−1 =

(ε,~l1, s
′
1, ..., ε,~ln, s

′
n, w,~s,~c), is a final configuration, where

for each peer pi, s
′
i ∈ Fi. Note that the input queues for the

peers are empty in a final configuration (i.e., every message
that has been sent is received).

We call the message sequences observed by the watcher
the conversations of the composite web service. Formally,
a finite word w ∈ Σ∗ is a conversation of a composite web
service S if there exists a run γ = γ0, γ1, γ2, ..., γ|γ|−1 of S
such that, the value of the watcher in the final configuration
γ|γ|−1 is w. Let L(S) denote the set of conversations of S.

We use the temporal logic LTL [18] to express properties
of conversations [11]. We define the set of atomic propo-
sitions as follows: Each atomic proposition is either of the
form c where c is a message type (i.e., c ∈ M), or c.pred,
where c ∈ M and pred is a predicate over the contents of
c. We denote that a message m ∈ Σ satisfies an atomic
proposition ψ by m |= ψ, where

m |= ψ iff

�
type(m) = ψ if ψ ∈ M
type(m) = c ∧ pred(m) = true if ψ = c.pred

LTL formulas are constructed from atomic propositions, log-
ical operators ∧,∨, and ¬, and temporal operators X (mean-
ing “next”), G (“globally”), U (“until”), and F (“eventu-
ally”). The semantics of LTL temporal operators can be

easily defined on finite length conversations. Given a com-
posite web service S and an LTL property φ, we say that
S |= φ, iff for all w ∈ L(S), w |= φ.

For example, the LTL property

G(msg1 ⇒ F(msg3 ∨msg5))

shown in Figure 4 denotes that everymsg1 will be eventually
followed by a msg3 or msg5. The composite web service in
Figure 4 satisfies this property since all the conversations
generated by this composite web service satisfy the property.

We say that a composite web service S over a schema
(P,M) has finite content if for each message type c ∈ M ,
dom(c) is a finite set and for each local variable l ∈ Li for
each i ∈ [1..n], dom(l) is a finite set. We have the following
undecidability result [11]:

Given a composite web service S with finite con-
tent and an LTL property φ, checking S |= φ is
undecidable.

Hence, even for protocols with finite content, verification
of composite web services is an undecidable problem. This is
due to presence of unbounded queues used for asynchronous
communication. In the next section we will show that, if
we put a bound on the sizes of the input queues we can
use existing model checking tools to analyze properties of
composite web services.

4. MODEL CHECKING INTERACTING
BPEL WEB SERVICES

In this section we discuss the use of the SPIN model
checker [12] for verification of interacting BPEL web ser-
vices. The input language of SPIN is called Promela, a mod-
eling language for finite-state concurrent processes. SPIN
model checker verifies (or falsifies, by generating counter-
examples) LTL properties of Promela specifications using an
exhaustive state space search [12]. Given a set of interacting
web services specified as BPEL processes with WSDL ports,
we generate a Promela specification which corresponds to
the composite web service. The Promela specification con-
tains a set of concurrent processes which communicate via
asynchronous channels. We implement the translation in
two phases: (1) from BPEL processes to guarded automata
model described in Section 3, and (2) from the guarded
automata model to Promela processes with asynchronous
communication channels. The guards in the intermediate
guarded automata model are XPath expressions manipulat-
ing the XML documents with XML Schema types.

This two step translation has several advantages: (a) The
intermediate guarded automata model enables us to imple-
ment static analysis techniques such as synchronizability
analysis described in the next section; (b) We are able to
use our translator from guarded automata to Promela de-
scribed in [10] in implementing the back-end translation; (c)
Decoupling the front- and back-ends of the translator will
enable us to target multiple web service languages at the
front-end (e.g., WSCI [23], DAML-S [8]) and multiple veri-
fication languages (e.g., SMV [7], Action Language Verifier
[6]) at the back-end in the future.

4.1 Translation from BPEL to Automata
Given a set of BPEL process specifications and the related

WSDL port declarations, we can construct a correspond-
ing composite web service specified using guarded automata.
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BPEL Sample Code Translation

assign

<assign ...>
<copy>

<from="yes"/>
<to var="aprvInfo"
part="accept"/>

</copy>
</assign>

[ aprvInfo / accept := ‘yes’ ]

receive

<receive ...

operation="approve"
variable="request"

/>
? ? approve_In

[request := approve_In]

invoke

<scope>
<invoke ...

operation="approve"
invar="request"

outvar="aprvInfo />
<catch ...
faultname="loanfault"

< ... handler1 ... />
</catch>

</scope>

handler1

!! approve_In

?? approve_Out

? ? loanfault

loanfault

εεεεεεεε

εεεεεεεε

[approve_In := request]

[aprvInfo :=

approve_Out]

sequence

<sequence ... >
< ... act1 ... >

< ... act2 ... >
</sequence> act1 act2εεεεεεεε

fault1 fault2

flow

<flow ...>

< ... act1 ...>
<source
linkname="link1"

condition="cond1"/>
</act1>

< ... act2 ...>
<target

linkname="link1/>
</act2>

</flow>

product act2

[b_link1]act1

[b_link1 :=
cond1 ]

Figure 5: From BPEL to Guarded Automata

We first construct the conversation schema, and then trans-
late the control flow of each BPEL process. As BPEL pro-
cess specifications are fed as input, the peer list P of the
schema tuple (P,M) is already known. Message types M
are extracted from WSDL files. For each input/output/fault
parameter of an operation in each port and each service
link of each BPEL process, a message type is declared. For
example if a BPEL process loanProcess has an operation
approve declared in a port aprvPT, and its input parame-
ter is of WSDL message format creditInfo, a message type
loanProcess aprvPT approve In will be declared in the com-
position schema, and creditInfo is used as its domain type.
When the name of an operation is unique among ports, our
tool will omit the port name in the generated message name
for simplicity (e.g. the approve Out in Figure 5). In BPEL,
the type of the contents of a message can be defined using
WSDL message declaration constructs, or SOAP definition
or XML Schema, we translate all possible formats to MSL
[4], a formal model for XML Schema.

Next we discuss the translation of BPEL control flow and
data manipulation. In Figure 5 we present the guarded au-
tomata translation for some typical language constructs in
BPEL language. As shown in the figure, each BPEL lan-
guage construct is translated into a guarded automaton with
one single initial state and one single final state. For exam-
ple, the assign statement is translated to a one-transition
automaton where the XPath expression guard of the transi-

tion expresses the assignment. Note that BPEL has several
different approaches for navigating messages (e.g. the key-
word part used in the example or using XPath expressions).
We translate all of them to equivalent XPath expressions,
and these XPath expressions are then embedded into the
guards of the generated transitions. The receive statement
is translated into a two-transition automaton, where the first
transition receives the message and the second transition as-
signs the input variable. Similarly, the main body of the
invoke statement is translated to an automaton where the
first transition sends the input message for the operation
that is being invoked, and the following two transitions re-
ceive the response and assign the output variable (assuming
there are no exceptions). Note that, exceptions might arise
during invoke, and we have to generate additional transi-
tions to handle them. For each fault there is a transition
which leads to an “exception exit”, where the information
about the fault is associated with the exception exit. When
a fault handler is wrapped around an invoke statement, our
translator connects the fault handler with the corresponding
exception exit.

BPEL control flow constructs such as sequence, switch,
and while are used to compose atomic constructs we dis-
cussed above. In Figure 5 we display the translation for
sequence. We connect the final state and initial state with
local transitions, and unmark the final state of all activities
except the last one. The information about exception exits
are recollected and properly maintained. Other control flow
constructs can be handled similarly by embedding the con-
trol flow to the transitions of the guarded automata. Finally,
for flow construct (which is the concurrent composition of
its branches), we simply construct the Cartesian product of
all its branches. There might be control dependency links
among the activities in different flow branches. We map
each link into a boolean variable, and their semantics are
reflected in the guards of the transitions appended to each
activity.

Translation of the control flow of BPEL to finite state ma-
chines or petri-nets has been discussed in [9, 17]. The dif-
ference in our work is that we handle XML based data ma-
nipulation using guarded automata with guards expressed
as XPath expressions. This enables us to verify properties
about XML data manipulation. Such analysis cannot be
done using approaches presented in [9, 17] since they ab-
stract away the data content.

4.2 Translation from Automata to Promela
Given a composite web service specified using interacting

guarded automata, we translate it into a Promela specifica-
tion which consists of a set of concurrent processes, one for
each guarded automaton. Each concurrent process is associ-
ated with an asynchronous communication channel storing
its input messages.

An example Promela output that is generated by our
translator is shown in Figure 6. The first part of the Promela
code consists of type declarations and global variable defi-
nitions. Each MSL type declaration used in conversation
schema is mapped into a record type (typedef) in Promela.
As in our guarded automata model, strings are used as con-
stants only, they are mapped to mtype, the enumerated type
in Promela (e.g. the element name in creditInfo is originally
a string). As shown in Figure 6, each message type in a
conversation schema has three corresponding global vari-
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/* type declaration */
typedef creditInfo{
mtype name; ...

}
...
/* message declaration */
creditInfo aprv_In_s, aprv_In_r, stub_aprv_In;
...
/* enumerate type of msgs and states of peers*/
mtype = {m_aprv_In, ....

m_loanaprv_s1, ... }
mtype msg;
...
/* channels */
chan ch_loanaprv = [8] of {mtype, creditInfo, appeal};
chan ch_customer= [8] of {mtype, aprvInfo};
...
proctype loanaprv(){
mtype state;
/* definition of local variables */
creditInfo request; ...
/* definition of auxiliary variables used

to evaluate XPath expressions */
bool bVar_0, ...

do::
/* evaluation of transition conditions */
... bCond1 = true; ...

/* nondeterministically select transitions to fire */
if
/* transition t1: s1 -> s2, ?aprv_In */
::state == m_loanaprv_s1 && bCond1 &&

ch_loanaprv ? [m_aprv_In] ->
atomic{
ch_loanaprv ?

m_aprv_In, aprv_In_r, stub_appeal;
state = m_loanaprv_s2 ;
}

/* transition t2: s2 -> s3, !aprv_Out,
[cond2 => aprv_Out//accept = ’yes’ ] */

::state == m_loanaprv_s2 && bCond2 ->
atomic{
aprv_Out_s.accept = m_yes;
ch_customer ! m_aprv_Out, aprv_Out_s;
state = m_loanaprv_s3;
msg = m_aprv_Out

}
...
/* may jump out if it is a final state */
:: state == m_final -> break;

fi;
od;

}
proctype customer(){ ... }
proctype assessor(){ ... }
proctype approver(){ ... }
init{
/* initialization */
...
atomic{
run loanaprv(); run customer(); ...

}
}

Figure 6: An Example Promela Translation

ables declared: one for recording its last sent instance (e.g.
aprv In s for message type aprv In), one for recording its
last received instance(e.g. aprv In r), and one “stub” vari-
able used in channel operations (e.g. stub aprv In). For
each message type, we also declare a corresponding enu-
merated constant, e.g., m aprv In for aprv In. The set of all
these enumerated constants constitutes the domain of enu-
merated variable msg, which is used to store the type of the
latest transmitted message.

A channel variable is declared for each peer to simulate
its input queue. For example channel ch loanaprv is the
queue of peer loanaprv and its length is 8. The contents
of a channel includes all input message types of that peer.
In this example, peer loanaprv has two input message types:
aprv In and appeal. Note that in each send/receive operation
of a channel, we actually send one message only, and other
elements have to be filled with stub messages. The first
mtype element in a channel content indicates the message
type that is being transmitted.

In the Promela code, each automaton is translated to a
process type (proctype). In the example shown in Figure
6, we have four process types loanaprv, customer, approver

and assessor. The default main process in Promela is called
init. The init process in Figure 6 initializes all global vari-
ables (initialization can be non-deterministic) and spawns
four processes, creating one process instance for each pro-
cess type.

Inside each proctype the local variables are declared first,
followed by the auxiliary variables used for the evaluation of
XPath expressions. An enumerated (mtype) variable state

is used to record the current state of the automaton. The
main body of the process is a single loop. In each iteration
of the loop, first enabling condition of each transition guard
is evaluated and the result is stored in the corresponding
boolean variable for that condition. For example, the cond1

in Figure 6 records the evaluation results for the enabling
condition of transition t1.

In Promela, if statements can have multiple branches
with a test condition for each branch, similar to a switch
statement. One of the branches of the if statement with
a test condition that evaluates to true is nondeterministi-
cally chosen and executed. In the Promela translation for
a guarded automaton, each transition of the automaton is
translated into a branch of the if statement inside the main
do loop body. The test condition for each branch checks
whether the current state is the source state of the corre-
sponding transition, and whether the enabling condition of
the corresponding transition evaluates to true. For receive-
transitions, we check if the head of the channel contains the
right message type by testing the first element of the channel
content. (Note that Promela statement channel ? messages

has side effects and cannot be used as a boolean condition,
hence we have to use channel ? [...] statement, which
checks the receive executability only but does not execute
the receive operation.) If the head of the channel matches
the message type of the receive operation, we consume the
message, do the assignment, and update the local variable
state. The handling of send-transitions is similar, and the
only difference is that we need to update global variable msg

while sending the message. Finally, if the state is a final
state, a nondeterministic choice can be made to jump out of
the loop and terminate.

The translation of XPath expression to Promela is not a
trivial problem. For example, consider the aprv In message
and suppose that it has an element preferred term which is
a list of desired (APR/termLength) pair proposed by the
customer, and the maximal length of the list is 10. Then
the XPath expression

aprv In / preferred term / termLength == 6

is translated into the following code:

bool bResult = false;
int i=0;

do
:: i<10 ->

if

:: aprv.preferred_term[i].termLength == 6
-> bResult = true

:: else -> skip;
fi;

:: else -> break;

od;

The XML Schema element preferred term is translated
into an array type in Promela. The key step in the gen-
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erated code above is to search for the proper array index
which satisfies the condition evaluation. When XPath func-
tions such as last() and position() need to be handled, the
translation becomes more complicated. The translation of
XPath expressions to Promela code is discussed in [10] and
we will omit the details here.

4.3 A Case Study
Using the translation tools described above, we translated

the “Loan Processing Example” in the BPEL document [2]
to Promela, and used the SPIN model checker to verify it.
The source code (BPEL and WSDL files) of the example is
taken from the IBM BPWS4J tool sample set [14]. Since no
BPEL files are provided for the other three peers (customer,
loan assessor, and loan approver) involved in the interaction,
we supplied their BPEL implementations.

The control logic of the loan approval process is as follows:
If the loan amount in the request sent by the customer is
lower than a certain amount, and if the loan assessor gives
a “low-risk” assessment, the loan approval process approves
the loan request; otherwise it will wait for the approver to
make the final decision. The main body of the loan approval
process is a flow construct, where its branches consist of
invoke, receive, reply, assign statements. There are six de-
pendence links among these concurrently running branches,
and an exception handler is wrapped around the flow con-
struct.

We considered the following two properties of the inter-
actions. The first is satisfied by the composite web service,
while the second is not.

G(LA aprv In s → F(LA aprv Out s ∨ LA aprv Fault))
G(LA aprv In s.amount>2 → F LA aprv Out s.accept!= m yes)

Here LA aprv ∗ are messages related to the approve opera-
tion of the loan approval process. The first property states
that when the customer sends a request to the loan approval
process, eventually it will either get an output message or a
fault. The second property states that if the request amount
is greater than 2 (since our domain is 4 here), it will even-
tually get rejected. (This property is false because the loan
approval process passes the decision to the loan approver,
and loan approver can still approve the request.)

Our tool translates the four BPEL files and corresponding
WSDL files into one Promela specification. In the generated
Promela code there are seven integer variables, which leads
to a large state space. To limit the state space, we set the
integer domain to 4, and change the condition of request
amount in the specification accordingly.

The first property is verified in about 2 minutes with 980
thousand states explored. We tried different channel sizes
from 1 to 10, and the verification cost changes very little.
But if we increase the integer domain, the verification cost
increases exponentially and uses up the memory resource.

For the second property, SPIN identifies the error very
quickly. When integer domain is 4, it only takes 0.2 seconds
to find and generate the error trace. The verification cost
does not increase with the integer domain, which should be
attributed to the depth-first search approach used in SPIN
to locate error (however for the correct property we have
to exhaust the whole state space). The cost also does not
increase with channel sizes.
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Figure 7: Three Composite Web Service Examples

5. SYNCHRONIZABILITY
Consider the three example composite web services given

in Figure 7. Each composite web service consists of two
peers: a requester and a server. For each “request” message
(represented as ri) sent by the requester, the server will re-
spond with a corresponding “acknowledgment” (ai). How-
ever this response may not be immediate (e.g. in Example
1). Finally the “end” message (e) concludes the interaction
between the requester and the server.

We can verify properties of these examples by translat-
ing them to Promela as described in the previous section.
However, as discussed above, we need to bound the sizes of
the input queues (communication channels in Promela) to
be able to verify a composite web service using SPIN, since
it is a finite state model checker. In fact, based on the un-
decidability of LTL verification (Section 3), it is generally
impossible to verify the behavior of a composite web service
with unbounded queues. In general, best we can do is partial
verification, i.e., to verify behavior of a composite web ser-
vice for queues with a fixed length. Note that the absence
of errors using such an approach does not guarantee that
the composite web service is correct. Interestingly, in this
section we will show that, Examples 2 and 3 are different
from Example 1 in Figure 7 in that the properties of Exam-
ples 2 and 3 can in fact be verified for unbounded message
queues, whereas for Example 1 we can only achieve partial
verification.

First, note that in Example 1 the requester can send an
arbitrary number of messages before the server starts con-
suming them. Hence the conversation set of Example 1 is
not a regular set [5]. Actually it is a subset of (r1|r2|a1|a2)

∗e
where the number of ri and ai messages are equal and in any
prefix the number of ri messages is greater than or equal to
the number of ai messages [5]. It is not surprising that we
cannot map the behavior of Example 1 to a finite state pro-
cess. Another problem with Example 1 is the fact that its
state space increases exponentially with the sizes of the in-
put queues. Hence, even partial verification for large queue
sizes becomes intractable.

In Example 2 the requester and server processes move in a
lock-step fashion, and it is easy to see that the conversations
generated by Example 2 is (r1a1 | r2a2)

∗e, i.e., a regular set.
In fact, the composite web service described in Example 2
has a finite set of reachable states. During any execution
of Example 2 at any state, there is at most one message
in each queue. Based on the results we will present in this
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section, we can statically conclude that properties of Exam-
ple 2 can be verified using synchronous communication (in
other words, using input queues of size 0).

Example 3 has an infinite state space as Example 1 and
unlike Example 2. In other words, the number of messages
in the input queues for Example 3 is not bounded. Similar
to Example 1, the state space of Example 3 also increases
exponentially with the sizes of the queues. However, unlike
Example 1, the conversation set of Example 3 is regular.
Although Example 3 has an infinite state space, we will show
that the properties of Example 3 can also be verified for
arbitrary queue sizes.
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We can experimentally demonstrate how state spaces of
the examples in Figure 7 change with the increasing queue
sizes. In Figure 8 we present the size of the reachable state
space for the examples in Figure 7 computed using the SPIN
model checker for different input queue sizes. The x-axis of
the figure is the size of the input queues, and y-axis dis-
plays the number of reachable states computed by SPIN. As
shown in the figure, the state space of Example 2 is fixed
(always 43 states), however the state spaces of Examples 1
and 3 increase exponentially with the queue size. Below we
will show that we can verify behaviors of Examples 2 and 3
for arbitrary queue sizes, although best we can do for Exam-
ple 1 is partial verification. In particular, we will show that
the communication among peers for Examples 2 and 3 are
“synchronizable” and we can verify their properties using
synchronous communication and guarantee that the verified
properties hold for asynchronous communication with un-
bounded queues.

5.1 Synchronous Communication
To further explore the differences of Examples 2 and 3

from Example 1, we define an alternative “synchronous” se-
mantics for composite web services different than the one in
Section 3. Intuitively, the synchronous semantics restricts
that each peer consumes its incoming messages immediately.
Therefore, there is no need to have the input message queue.

Recall that a composite web service S is a tuple S =
〈(P,M),A1, ...,An〉 where each guarded automaton Ai de-
scribes the behavior of a peer. In a global configuration

(Q1,~l1, t1, ..., Qn,~ln, tn, w,~s, ~r) of S, Qj ’s (j ∈ [1..n]) are the
configurations of the input queues. We now define a con-
figuration of a composite web service with the synchronous
communication semantics, or sc-configuration, as a tuple

(~l1, t1, ...,~ln, tn, w,~s, ~r), which differs from a configuration
by dropping all input queues.

When peers interact with each other through asynchro-
nous communication, a send operation inserts a message
to the input queue of the target peer and a receive oper-
ation removes the message at the head of the input queue.
The definition of the derivation relation between two sc-
configurations is modified from the asynchronous case so
that a send transition can only be executed instantaneously
with a matching receive operation, i.e., sending and receiv-
ing of a message occur synchronously. We call this semantics
the synchronous communication semantics for a composite
web service.

The definitions of the watcher and the conversation set
are modified accordingly. In particular, given a composite
web service S, let Lsyn(S) denote the conversation set un-
der the synchronous communication semantics. A composite
web service is synchronizable if its conversation set remains
the same when the synchronous communication semantics
is used, i.e., L(S) = Lsyn(S).

Clearly, if a composite web service is synchronizable, then
we can verify its behavior without any input queues and
the results of the verification will hold for the behaviors of
the composite web service in the presence of asynchronous
communication with unbounded queues. In Section 5.2 we
will give sufficient conditions for synchronizability. Based
on these conditions, we can show that Examples 2 and 3 in
Figure 7 are indeed synchronizable.

5.2 Synchronizability Analysis
For a guarded automaton A = (M in,Mout, L, T, s, F,∆),

its skeleton is a standard (i.e. guardless) finite state automa-

ton sk(A) = (M in,Mout, T, s, F,∆′) where all local vari-
ables are removed and each transition τ ′ ∈ ∆′ is generated
by dropping the guard of a corresponding transition τ in
∆. (The local-transitions of the guarded automata become
ε-transitions in the skeleton.) Note that the language rec-
ognized by the skeleton sk(A), i.e. L(sk(A)), is a subset of
M∗, while L(A) ⊆ Σ∗.

Given a set of guarded automata, their composition is
synchronizable if the following three conditions are satisfied
by their skeletons:
1) Synchronous compatibility: If we construct the syn-
chronous composition (i.e., Cartesian product) of the skele-
tons, the resulting automaton does not contain a state where
a peer pi is ready to send a message to peer pj but peer pj

is not ready to receive the message.
2) Autonomy: For each peer pi and each state sj of pi, at
most one of the following three conditions hold: (a) the next
transitions at sj (including transitions that are reachable
through ε-transitions) are all send operations, (b) the next
transitions at sj (including transitions that are reachable
through ε-transitions) are all receive operations, or (c) sj

is either a final state or it can reach a final state through
ε-transitions.
3) Lossless composition: Mark the initial state of each
peer skeleton a final state, and construct the Cartesian prod-
uct of the peer skeletons. The projection of the Cartesian
product to each peer should be equivalent to the original
skeleton (with the initial state marked as a final state).

Theorem 1. Let S = 〈(P,M),A1, ...,An〉 be a compos-
ite web service where their skeletons sk(A1), ..., sk(An) sat-
isfy the above three synchronizability conditions, then S is
synchronizable.

628



Front End
Guarded
automata Back End

(synchronous
communication)

BPEL

Web
Services

Promela

DAML-S

WSCI

. . .

SMV

Action
Language

Synchronization 
analysis

Back End
(bounded queue)

Verification
Languages

. . .

Intermediate
Representation

Other analysis 
techniques

A Tool for Analysis and Verification of Web Services

Figure 9: Our Web Service Analysis and Verification Tool

The synchronizability conditions listed above are derived
from the realizability conditions for conversation protocols
that we presented in [11]. A proof along the lines of the
proof for realizability conditions given in [11] can be used to
establish Theorem 1. Intuitively, we can show that, when a
composite web service satisfies the above three conditions,
the input queue of each peer is empty whenever the peer
sends out a message. Based on this observation, we can
show that for each conversation there exists a corresponding
execution in which the peers communicate synchronously.

Note that both Examples 2 and 3 in Figure 7 are synchro-
nizable whereas Example 1 is not (it violates the autonomy
condition). Hence, we can verify the properties of Examples
2 and 3 using synchronous communication (which can be
achieved in SPIN by restricting the communication channel
lengths to 0) and the results we obtain will hold for be-
haviors generated using asynchronous communication with
unbounded queues.

Relaxing the Autonomy Condition. As we discussed
in Section 4, the flow construct in BPEL specification gen-
erates the Cartesian product of its flow branches when it
is translated to the guarded automata. Unfortunately, such
flow constructs are likely to violate the autonomy condi-
tion given above. For example, assume that there are two
branches inside a flow statement, and each branch is a sin-
gle invoke operation which first sends a request and then
receives response. In the guarded automaton translation,
there will be a state with one transition for sending out
the request for one of the branches and another transition
for receiving the response for the other branch. Note that
such a state violates the autonomy condition. However, even
the corresponding peer sends out a message while its input
queue is not empty, since the Cartesian product of the flow
branches includes all the permutations of the transitions in
different branches we can show that there is an equivalent
computation where the send operation is executed when the
queue is empty, after the receive operation. We can gener-
alize this scenario and we can relax the autonomy condition
to single-entry single-exit permutation blocks. A permuta-
tion block has no cycles and no final states and contains all
the permutations of the transitions from its entry to its exit.
Then, we relax the autonomy condition by stating that all
the states in a permutation block (including the entry but
excluding the exit) satisfy the autonomy condition.

Loan Processing Service Revisited. The “Loan Pro-
cessing Example” discussed in Section 4 passes our syn-
chronizability condition test, and we can safely verify the
two LTL properties on its synchronous composition by set-
ting the channel size to 0 in its Promela translation. The

verification cost of channel size 0 is not significantly lower
than that of the larger channel sizes. However even when
the synchronous verification with synchronizability analy-
sis does not reduce the state space much, it is still better
than the partial verification because we are ensured that
the verified properties work for asynchronous composition
with unbounded queue size, while the partial verification
can not. More examples of realizability/synchronizability
analysis are available on our tool site [22].

There are other ways to achieve decidability in analyzing
queued or buffered systems, for example, the realizability
analysis of MSC graphs [1], and the use of sound WF-net
(a variation of bounded petri-net) to analyze workflows [20].
Both in [1] and [20], the main idea is to provide sufficient
conditions which guarantee that the queue (or buffer) sizes
are bounded for any execution of the system. However, the
synchronizability approach used in this paper is different.
For example, in Example 3 of Figure 7, queue size of the
server is not bounded during its composition with the re-
quester but it is still synchronizable.

6. CONCLUSIONS AND FUTURE WORK
Our contributions in this paper and [10] together form a

system for analyzing and verifying web services, as shown in
Figure 9. Specifically, the input to our tool is a composite
web service specification and some LTL properties. Our tool
can be used to check if the composite web service satisfies
the LTL properties. Currently, our tool accepts BPEL spec-
ifications as input and translates them to guarded automata
in our model. The guarded automata can be either trans-
lated directly to Promela with bounded queues or synchro-
nizability analysis can be used. Depending on the result of
the synchronizability check, the system generates a Promela
specification either with synchronous communication (if the
check succeeds) or with bounded queues (otherwise). The
SPIN model checker can then be invoked to do the verifica-
tion on the Promela specification.

Clearly, the system can be extended in the future, as illus-
trated in Figure 9. First, translation from other web service
specification languages (such as DAML-S, WSCI, etc.) can
be added to the front-end. This immediately allows veri-
fication of web services defined in these languages without
changing the back-end. Second, different verification tools
can be targeted at the back-end either to make verification
more efficient or to have more expressive verification lan-
guages. Finally, it is possible to add additional analysis tech-
niques, such as automated abstraction, to the tool. Hence
our guarded automata model provides a flexible intermedi-
ate representation that can be used for different analysis.
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There also exist other challenges for applying model check-
ing techniques to web services concerning extending the cur-
rent model of guarded automata. In our current model, we
assume that service links (channels) among peers are “pre-
determined” and established prior to the interaction starts.
Hence some advanced features in BPEL, for example, the
endpoint references (to dynamically determine the peer to
talk to), cannot be captured in the current model. Also
our model does not handle dynamic process instantiation
and correlation sets. Extending our model to address these
issues is an interesting direction for future research.
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