
Index Structures and Algorithms for Querying
Distributed RDF Repositories

Heiner Stuckenschmidt
Vrije Universiteit Amsterdam

The Netherlands

heiner@cs.vu.nl

Richard Vdovjak
Geert-Jan Houben
Eindhoven University of

Technology
The Netherlands

richardv@win.tue.nl
g.j.houben@tue.nl

Jeen Broekstra
Aduna B.V. Amerfoort

(formerly: Aidministrator)
The Netherlands

jeen.broekstra@aduna.biz

ABSTRACT
A technical infrastructure for storing, querying and managing RDF
data is a key element in the current semantic web development.
Systems like Jena, Sesame or the ICS-FORTH RDF Suite are widely
used for building semantic web applications. Currently, none of
these systems supports the integrated querying of distributed RDF
repositories. We consider this a major shortcoming since the se-
mantic web is distributed by nature. In this paper we present an ar-
chitecture for querying distributed RDF repositories by extending
the existing Sesame system. We discuss the implications of our ar-
chitecture and propose an index structure as well as algorithms for
query processing and optimization in such a distributed context.

Categories and Subject Descriptors
E.1 [Data]: DATA STRUCTURES—Distributed Data Structures;
H.2.4 [Information Systems]: DATABASE MANAGEMENT SYS-
TEMS—Distributed Databases, Query Processing

General Terms
Algorithms, Performance, Design

Keywords
RDF Querying, Index Structures, Optimization

1. MOTIVATION
The need for handling multiple sources of knowledge and infor-

mation is quite obvious in the context of semantic web applications.
First of all we have the duality of schema and information content
where multiple information sources can adhere to the same schema.
Further, the re-use, extension and combination of multiple schema
files is considered to be common practice on the semantic web [7].
Despite the inherently distributed nature of the semantic web, most
current RDF infrastructures (for example [4]) store information lo-
cally as a single knowledge repository, i.e., RDF models from re-
mote sources are replicated locally and merged into a single model.
Distribution is virtually retained through the use of namespaces to
distinguish between different models. We argue that many interest-
ing applications on the semantic web would benefit from or even
require an RDF infrastructure that supports real distribution of in-
formation sources that can be accessed from a single point. Beyond
Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

the argument of conceptual adequacy, there are a number of techni-
cal reasons for real distribution in the spirit of distributed databases:

Freshness:The commonly used approach of using a local copy
of a remote source suffers from the problem of changing informa-
tion. Directly using the remote source frees us from the need of
managing change as we are always working with the original.

Flexibility: Keeping different sources separate from each other
provides us with a greater flexibility concerning the addition and
removal of sources. In the distributed setting, we only have to ad-
just the corresponding system parameters.

In many cases, it will even be unavoidable to adopt a distributed
architecture, for example in scenarios in which the data is not owned
by the person querying it. In this case, it will often not be permitted
to copy the data. More and more information providers, however,
create interfaces that can be used to query the information. The
same holds for cases where the information sources are too large to
just create a single model containing all the information, but they
still can be queried using a special interface (Musicbrainz is an ex-
ample of this case). Further, we might want to include sources that
are not available in RDF, but that can be wrapped to produce query
results in RDF format. A typical example is the use of a free-text
index as one source of information. Sometimes there is not even
a fixed model that could be stored in RDF, because the result of a
query is only calculated at runtime (Google, for instance, provides a
programming interface that could be wrapped into an RDF source).
In all these scenarios, we are forced to access external information
sources from an RDF infrastructure without being able to create a
local copy of the information we want to query. On the semantic
web, we almost always want to combine such external sources with
each other and with additional schema knowledge. This confirms
the need to consider an RDF infrastructure that deals with informa-
tion sources that are actually distributed across different locations.

In this paper, we address the problem of integrated access to dis-
tributed RDF repositories from a practical point of view. In par-
ticular, starting from a real-life use case where we are considering
a number of distributed sources that contain research results in the
form of publications, we take the existing RDF storage and retrieval
system Sesame and describe how the architecture and the query
processing methods of the system have to be extended in order to
move to a distributed setting.

631

The paper is structured as follows. In Section 2 we present an
extension of the Sesame architecture to multiple, distributed repos-
itories and discuss basic assumptions and implications of the ar-
chitecture. Section 3 presents source index hierarchies as suit-
able mechanisms to support the localization of relevant data during
query processing. In Section 4 we introduce a cost model for pro-
cessing queries in the distributed architecture, and show its use in
optimizing query execution as a basis for the two-phase optimiza-
tion heuristics for join ordering. Section 5 reviews previous work
on index structures for object-oriented data bases. It also summa-
rizes related work on query optimization particularly focusing on
the join ordering problem. We conclude with a discussion of open
problems and future work.

2. INTEGRATION ARCHITECTURE
Before discussing the technical aspects of distributed data and

knowledge access, we need to put our work in context by introduc-
ing the specific integration architecture we have to deal with. This
architecture limits the possible ways of accessing and processing
data, and thereby provides a basis for defining some requirements
for our approach. It is important to note that our work is based on
an existing RDF storage and retrieval system, which more or less
predefines the architectural choices we made. In this section, we
describe an extension of the Sesame system [4] to distributed data
sources.

The Sesame architecture is flexible enough to allow a straight-
forward extension to a setting where we have to deal with multiple
distributed RDF repositories. In the current setting, queries, ex-
pressed in Sesame’s query language SeRQL, are directly passed
from the query engine to an RDF API (SAIL) that abstracts from
the specific implementation of the repository. In the distributed set-
ting, we have several repositories that can be implemented in dif-
ferent ways. In order to abstract from this technical heterogeneity,
it is useful to introduce RDF API implementations on top of each
repository, making them accessible in the same way.

The specific problem of a distributed architecture is now that in-
formation relevant to a query might be distributed over the different
sources. This requires to locate relevant information, retrieve it, and
combine the individual answers. For this purpose, we introduce a
new component between the query parser and the actual SAILs -
the mediator SAIL (see Figure 1).

In this work, we assume that local repositories are implemented
using database systems that translate queries posed to the RDF API
into SQL queries and use the database functionality to evaluate
them (compare [5]). This assumption has an important influence on
the design of the distributed query processing: the database engines
underlying the individual repositories have the opportunity to per-
form local optimization on the SQL queries they pose to the data.
Therefore we do not have to perform optimizations on sub-queries
that are to be forwarded to a single source, because the repository
will deal with it. Our task is rather to determine which part of the
overall query has to be sent to which repository.

In the remainder of this paper, we describe an approach for query-
ing distributed RDF sources that addresses these requirements im-
plied by the adopted architecture. We focus our attention on index
structures and algorithms implemented in the mediator SAIL.

Figure 1: Distribution Architecture.

3. INDEX STRUCTURES
As discussed above, in order to be able to make use of the opti-

mization mechanisms of the database engines underlying the differ-
ent repositories, we have to forward entire queries to the different
repositories. In the case of multiple external models, we can further
speed up the process by only pushing down queries to information
sources we can expect to contain an answer. The ultimate goal
is to push down to a repository exactly that part of a more com-
plex query for which a repository contains an answer. This part
can range from a single statement template to the entire query. We
can have a situation where a subset of the query result can directly
be extracted from one source, and the rest has to be extracted and
combined from different sources. This situation is illustrated in the
following example.

EXAMPLE 1. Consider the case where we want to extract infor-
mation about research results. This information is scattered across
a variety of data sources containing information about publica-
tions, projects, patents, etc. In order to access these sources in
a uniform way, we use the OntoWeb research ontology. Figure 2
shows parts of this ontology.

Figure 2: Part of the OntoWeb Ontology.

Suppose we now want to ask for the titles of articles by employ-
ees of organizations that have projects in the area “RDF”. The
path expression of a corresponding SeRQL query would be the fol-
lowing1:

1For the sake of readability we omit namespaces whenever they do
not play a technical role.

632

{A} title {T};
author {W} affiliation {O}
carriesOut {P} topic {’RDF’}

Now, let’s assume that we have three information sourcesS1,S2,
andS3. S1 is a publication data base that contains information
about articles, titles, authors and their affiliations.S2 is a project
data base with information about industrial projects, topics, and
organizations. Finally,S3 is a research portal that contains all of
the above information for academic research.

If we want to answer the query above completely we need all
three information sources. By pushing down the entire query toS3
we get results for academic research. In order to also retrieve the
information for industrial research, we need to split up the query,
push the fragment

{A} title {T};
author {W} affiliation {O}

to S1, the fragment

{O} carriesOut {P} topic {’RDF’}

to S2, and join the result based on the identity of the organiza-
tion.

The example illustrates the need for sophisticated indexing struc-
tures for deciding which part of a query to direct to which informa-
tion source. On the one hand we need to index complex query
patterns in order to be able to push down larger queries to a source;
on the other hand we also need to be able to identify sub-queries
needed for retrieving partial results from individual sources.

In order to solve this problem we build upon existing work on
indexing complex object models using join indices [14]. The idea
of join indices is to create additional database tables that explic-
itly contain the result of a join over a specific property. At runtime,
rather than computing a join, the system just accesses the join index
relation which is less computationally expensive. The idea of join
indices has been adapted to deal with complex object models. The
resulting index structure is a join index hierarchy [21]. The most
general element in the hierarchy is an index table for elements con-
nected by a certain pathp0::n�1 of lengthn. Every following level
contains all the paths of a particular length from 2 paths of length
n�1 at the second level of the hierarchy ton paths of length 1 at the
bottom of the hierarchy. In the following, we show how the notion
of join index hierarchies can be adapted to deal with the problem of
determining information sources that contain results for a particular
sub-query.

3.1 Source Index Hierarchies
The majority of work in the area of object oriented databases is

focused on indexing schema-based paths in complex object models.
We can make use of this work by relating it to the graph-based in-
terpretation of RDF models. More specifically, every RDF model
can be seen as a graph where nodes correspond to resources and
edges to properties linking these resources. The result of a query to
such a model is a set of subgraphs corresponding to a path expres-
sion. While a path expression does not necessarily describe a single
path, it describes a tree that can be created by joining a set of paths.
Making use of this fact, we first decompose the path expression
into a set of expressions describing simple paths, then forward the
simpler path expressions to sources that contain the corresponding
information using a path-based index structure, and join retrieved
answers to create the result.

The problem with using path indices to select information sources
is the fact that the information that makes up a path might be dis-
tributed across different information sources (compare Example 1).
We therefore have to use an index structure that also contains infor-
mation about sub-paths without loosing the advantage of indexing
complete paths. An index structure that combines these two charac-
teristics is the join index hierarchy proposed in [21]. We therefore
take their approach as a basis for defining asource index hierarchy.

DEFINITION 1 (SCHEMA PATH). Let G = hV;E; L; s; t; li
be a labelled graph of an RDF model whereV is a set of nodes,E
a set of edges,L a set of labels,s; t : E ! V andl : E ! L.

For everye 2 E, we haves(e) = r1; t(e) = r2 andl(e) = le if
and only if the model contains the triple(r1; le; r2). A path in G is
a list of edgese0; � � � ; en�1 such thatt(ei) = s(ei+1) for all i =
0; � � � ; n � 2. Letp = e0; � � � ; en�1 be a path, the corresponding
schema path is the list of labelsl0; � � � ; ln�1 such thatli = l(ei).

The definition establishes the notion of a path for RDF models.
We can now use path-based index structures and adapt them to the
task of locating path instances in different RDF models. The basic
structure we use for this purpose is an index table of sources that
contain instances of a certain path.

DEFINITION 2 (SOURCE INDEX). Letp be a schema path; a
source index forp is a set of pairs(sk; nk) wheresk is an infor-
mation source (in particular, an RDF model) and the graph ofsk
contains exactlynk paths with schema pathp andnk > 0.

A source index can be used to determine information sources that
contain instances of a particular schema path. If our query contains
the pathp, the corresponding source index provides us with a list of
information sources we have to forward the query to in order to get
results. The information about the number of instance paths can be
used to estimate communication costs and will be used for join or-
dering (see Section 4). So far the index satisfies the requirement of
being able to list complete paths and push down the corresponding
queries to external sources. In order to be able to retrieve informa-
tion that is distributed across different sources, we have to extend
the structure based on the idea of a hierarchy of indices for arbitrary
sub-paths. The corresponding structure is defined as follows.

DEFINITION 3 (SOURCE INDEX HIERARCHY). Let
p = l0; � � � ; ln�1 be a schema path. A source index hierarchy for
p is an n-tuplehPn; � � � ; P1i where

� Pn is a source index forp
� Pi is the set of all source indices for sub-paths ofp with

lengthi that have at least one entry.

The most suitable way to represent such index structure is a hi-
erarchy, where the source index of the indexed path is the root ele-
ment. The hierarchy is formed in such a way that the subpart rooted
at the source index for a pathp always contains source indices for
all sub-paths ofp. This property will later be used in the query
answering algorithm. Forming a lattice of source indices, a source
index hierarchy contains information about every possible schema
sub-path. Therefore we can locate all fragments of paths that might
be combined into a query result. At the same time, we can first
concentrate on complete path instances and successively investi-
gate smaller fragments using the knowledge about the existence of
longer paths. We illustrate this principle in the following example.

633

EXAMPLE 2. Let us reconsider the situation in Example 1. The
schema path we want to index is given by the list (author, affilia-
tion, carriesOut, topic). The source index hierarchy for this path
therefore contains source indices for the paths

� p0::3 : (author, affiliation, carriesOut, topic)

� p0::2: (author, affiliation, carriesOut),
p1::3: (affiliation, carriesOut, topic)

� p0::1:(author, affiliation),
p1::2:(affiliation, carriesOut),
p2::3:(carriesOut, topic)

� p0:(author),
p1:(affiliation),
p2:(carriesOut),
p3(topic)

Starting from the longest path, we compare our query expression
with the index (see Figure 3 for an example of index contents). We
immediately get the information thatS3 contains results. Turning
to sub-paths, we also find out thatS1 contains results for the sub-
path (author, affiliation) andS2 for the sub-path (carriesOut, topic)
that we can join in order to compute results, because together both
sub-paths make up the path we are looking for.

The source indices also contain information about the fact that
S3 contains results for all sub-paths of our target path. We still
have to take this information into account, because in combination
with fragments from other sources we might get additional results.
However, we do not have to consider joining sub-paths from the
same source, because these results are already covered by longer
paths. In the example we see thatS2 will return far less results than
S1 (because there are less projects than publications). We can use
this information to optimize the process of joining results.

A key issue connected with indexing information sources is the
trade-off between required storage space and computational proper-
ties of index-based query processing. Compared to index structures
used to speed up query processing within an information source, a
source index is relatively small as it does not encode information
about individual elements in a source. Therefore, the size of the in-
dex is independent of the size of the indexed information sources.
The relevant parameters in our case are the number of sourcess and
the lengths of the schema pathn. More specifically, in the worst
case a source index hierarchy contains source indices for every sub-
path of the indexed schema path. As the number of all sub-path of

a path is
nP

i=1 i, the worst-case2 space complexity of a source index

hierarchy isO(s � n2). We conclude that the length of the indexed
path is the significant parameter here.

3.2 Query Answering Algorithm
Using the notion of a source index hierarchy, we can now define

a basic algorithm for answering queries using multiple sources of
information. The task of this algorithm is to determine all possi-
ble combinations of sub-paths of the given query path. For each of
these combinations, it then has to determine the sources containing
results for the path fragments, retrieve these results, and join them
into a result for the complete path. The main task is to guarantee
that we indeed check all possible combinations of sub-paths for the

2It is the case where all sources contain results for the complete
schema path.

query path. The easiest way of guaranteeing this is to use a simple
tree-recursion algorithm that retrieves results for the complete path,
then splits the original path, and joins the results of recursive calls
for the sub-paths. In order to capture all possible splits this has to
be done for every possible split point in the original path. The cor-
responding semi-formal algorithm is given below (Algorithm 1).

Algorithm 1 Compute Answers.

Require: A schema pathp = l0; � � � ; ln�1
Require: A source index hierarchyh = (Pn; � � � ; P1) for p

for all sourcessk in source indexPn do
ANSWERS := instances of schema pathp in sourcesk
RESULT := result [answers

end for
if n � 2 then

for all i = 1 � � � n� 1 do
p0::i�1 := l0; � � � li�1
pi::n�1 := li; � � � ln�1
h0::i�1 := Sub-hierarchy ofh rooted at the source index for
p0::i�1
hi::n�1 := Sub-hierarchy ofh rooted at the source index for
pi::n�1
res1 := ComputeAnswers(p0::i�1; h0::i�1)
res2 := ComputeAnswers(pi::n�1; hi::n�1)
RESULT := result [join(res1; res2)

end for
end if
return result

Note that Algorithm 1 is far from being optimal with respect to
runtime performance. The straightforward recursion scheme does
not take specific actions to prevent unnecessary work and it neither
selects an optimal order for joining sub-paths. We can improve this
situation by using knowledge about the information in the different
sources and performing query optimization.

4. QUERY OPTIMIZATION
In the previous section we described a light-weight index struc-

ture for distributed RDF querying. Its main task is to index schema
paths w.r.t. underlying sources that contain them. Compared to
instance-level indexing, our approach does not require creating and
maintaining oversized indices since there are far fewer sources than
there are instances. Instance indexing would not scale in the web
environment and as mentioned above in many cases it would not
even be applicable, e.g., when sources do not allow replication
of their data (which is what instance indices essentially do). The
downside of our approach, however, is that query answering with-
out the index support at the instance level is much more computa-
tionally intensive. Moreover, in the context of semantic web portal
applications the queries are not man-entered anymore but rather
generated by a portal’s front-end (triggered by the user) and of-
ten exceed the size3 which can be easily computed by using brute
force. Therefore we focus in this section on query optimization as
an important part of a distributed RDF query system. We try to
avoid re-inventing the wheel and once again seek for inspiration in
the database field, making it applicable by “relationizing” the RDF
model.

Each single schema pathpi of length 1 (also called 1-path) can
be perceived as a relation with two attributes: the source vertex
3Especially, the length of the path expression.

634

Figure 3: Source index hierarchy for the given query path.

s(pi) and the target vertext(pi). A schema path of length more
than 1 is modelled as a set of relations joined together by the iden-
tity of the adjacent vertices, essentially representing a chain query
of joins as defined in Definition 4. This relational view over an
RDF graph offers the possibility to re-use the extensive research on
join optimization in databases, e.g. [1, 8, 9, 17, 20].

Taking into account the (distributed) RDF context of the join or-
dering problem there are several specifics to note when devising
a good query plan. As in distributed databases, communication
costs significantly contribute to the overall cost of a query plan.
Since in our case the distribution is assumed to be realized via an
IP network with a variable bandwidth, the communications costs
are likely to contribute substantially to the overall processing costs,
which makes the minimization of data transmission across the net-
work very important. Unless the underlying sources provide join
capabilities, the data transmission cannot be largely reduced: all
(selected) bits of data from the sources are joined by the mediator
and hence must be transmitted via the network.

There may exist different dependencies (both structural and ex-
tensional) on the way the data is distributed. If the information
about such dependencies is available, it essentially enables the op-
timizer to prune join combinations which cannot yield any results.
The existence of such dependencies can be (to some extent) com-
puted/discovered prior to querying, during the initial integration
phase. Human insight is, however, often needed in order to avoid
false dependency conclusions, which could potentially influence
the completeness of query answering.

The performance and data statistics are both necessary for the
optimizer to make the right decision. In general, the more the op-
timizer knows about the underlying sources and data, the better
optimized the query plan is. However, taking into account the au-
tonomy of the sources, the necessary statistics do not have to be
always available. We design our mediator to cope with incomplete
statistical information in such a way that the missing parameters are
estimated as being worse than those that are known (pessimistic ap-
proach). Naturally, the performance of the optimizer is then lower
but it increases steadily when the estimations are made more real-
istic based on the actual response from the underlying sources; this
is also known as optimizer calibration.

As indicated above, the computational capabilities of the under-
lying sources may vary considerably. We distinguish between those
sources that can only retrieve the selected local data (pull up strat-
egy) and those that can perform joins of their local and incoming
external data (push down strategy), thus offering computational ser-
vices that could be used to achieve both a higher degree of paral-
lelism and smaller data transmission over the network, e.g., by ap-
plying semi-join reductions [1]. At present, however, most sources
are capable only of selecting the desired data within their extent,
i.e., they do not offer the join capability. Therefore, further we fo-
cus mainly on local optimization at the mediator’s side.

For this purpose we need to perceive an RDF model as a set of
relations on which we can apply optimization results from the area
of relational databases. In this context the problem of join ordering
arises, when we want to compute the results for schema paths from
partial results obtained from different sources. Creating the result
for a schema corresponds to the problem of computing the result of
a chain query as defined below:

DEFINITION 4 (CHAIN QUERY). Letp be a schema path com-
posed from the 1-pathsp1; � � � ; pn. The chain query ofp is the n-
join p1 ./t(p1)=s(p2) p2 ./t(p2)=s(p3) p3 ./ � � � pn , wheres(pi)
and t(pi) are returning an identity of a source and target node,
respectively. As the join condition and attributes follow the same
pattern for all joins in the chain query, we omit them whenever they
are clear from the context.

In other words, to follow a pathp of length 2 means perform-
ing a join between the two paths of length 1 whichp is composed
from. The problem of join optimization is to determine the right
order in which the joins should be computed, such that the over-
all response time for computing the path instances is minimized.4

Note that a chain query in Definition 4 does not include explicit
joins, i.e., those specified in theWhere clause, or by assigning the
same variable names along the path expression. When we append
these explicit joins, the shape of the query usually changes from a
linear chain to a query graph containing a circle or a star, making
the join ordering problem NP-hard [15].

4In case the sources offer also join capabilities the problem is not
only in which order but also where the joins should take place.

635

4.1 Space Complexity
Disregarding the solutions obtained by the commutativity of joins,

each query execution plan can be associated with a sequence of
numbers that represents the order in which the relations are joined.
We refer to this sequence as footprint of the execution plan.

EXAMPLE 3. For brevity reasons, assume the following name
substitutions in the model introduced in Example 1: the concept
namesArticle, Employee, Organization, Project, ResearchTopic
becomea, b, c, d, e, respectively; the property namesauthor, affili-
ation, carriesOut, topicare substituted with1, 2, 3, 4, respectively.
Figure 4 presents two possible execution plans and their footprints.

Figure 4: Two possible query executions and their footprints.

If also the order of the join operands matters, i.e., the commuta-
tivity law is considered, the sequence of the operands of each join
is recorded in the footprint as well. The solution space consists of
query plans (their footprints) which can be generated. We distin-
guish two cases: first the larger solution space of bushy trees and
then its subset consisting of right-deep trees.

If we allow for an arbitrary order of joins the resulting query
plans are so-called bushy trees where the operands of a join can
be both a base relation5 or a result of a previous join. For a query
with n joins there aren! possibilities of different query execution
plans if we disregard the commutativity of joins and cross prod-
ucts. Note that in the case of bushy trees, there might be several
footprints associated with one query tree. For instance, the bushy
tree in Example 3 can be evaluated in different order yielding two
more footprints:(2, 4, 1, 3)or (4, 2, 1, 3). In our current approach,
these footprints would be equivalent w.r.t. the cost they represent.
However, treating them independently allows us to consider in the
future also semi-join optimization [1] where their cost might differ
considerably.

If the commutativity of join is taken into account, there are
�2nn

� n!2n
different possibilities of ordering joins and their individual con-
stituents [22]. However, in case of memory-resident databases where
all data fits in main memory, the possibilities generated by the com-
mutativity law can be for some join methods neglected as they
mainly play a role in the cost model minimizing disk-memory oper-
ations; we discuss this issue further in Subsection 4.2. We adopt the
memory-only strategy as in our context there are always only two
5A base relation is that part of the path which can be retrieved di-
rectly from one source.

attributes per relation, both of them being URI references which,
when the namespace prefix is stored separately, yield a very small
size. Of course, the assumption we make here is that the Sesame
server is equipped with a sufficient amount of memory to accom-
modate all intermediate tuples of relations appearing in the query.

A special case of a general execution plan is a so-called right-
deep tree which has the left-hand join operands consisting only of
base relations. For a footprint that starts with ther-th join there are�nr
�

possibilities of finishing the joining sequence. Thus there are

in total
n�1P
i=0

�n�1i
� = 2n�1 possibilities of different query execu-

tion plans.6. In this specially shaped query tree exists an execution
pipeline of lengthn�1 that allows both for easier parallelizing and
for shortening the response time [8] This property is very useful in
the context of the WWW where many applications are built in a
producer-consumer paradigm.

4.2 Cost Model
The main goal of query optimization is to reduce the computa-

tional cost of processing the query both in terms of the transmission
cost and the cost of performing join operations on the retrieved re-
sult fragments. In order to determine a good strategy for process-
ing a query, we have to be able to exactly determine the cost of a
query execution plan and to compare it to costs of alternative plans.
For this purpose, we capture the computational costs of alternative
query plans in a cost model that provides the basis for the optimiza-
tion algorithm that is discussed later.

As mentioned earlier, we adopt the memory-resident paradigm,
and the cost we are trying to minimize is equivalent to minimizing
the total execution time. There are two main factors that influence
the resulting cost in our model. First is the cost of data transmission
to the mediator, and second is the data processing cost.

DEFINITION 5 (TRANSMISSIONCOST). The transmission
cost of path instances of the schema pathp from a sourceX to
the mediator is modelled asTCp = CinitX + jpj � Lngthp �
kURIkX � CX whereCinitX represents the cost of initiating the
data transmission,jpj denotes the cardinality,Lngthp stands for
the length of the schema pathp, kURIkX is the size of a URI at
the source X7 andCX represents transmission cost per data unit
fromX to the mediator.

Since we apply all reducing operations (e.g., selections and pro-
jections) prior to the data transmission phase, the data processing
mainly consists of join costs. The cost of a join operation is influ-
enced by the cardinality of the two operands and the join-method
which is utilized. As we already pointed out, there are no instance
indices at the mediator side that would allow us to use some join
“shortcuts”. In the following we consider two join methods: a
nested loop join and a hash join both without additional indexing
support.

DEFINITION 6 (NESTED LOOP JOIN COST). The processing
cost of a nested loop join of two relationsp; r is defined asNJCp;r
= jpj�jrj�K(p; r), wherejxj denotes the cardinality of the relation
x andK(p; r) represents the cost of the identity comparison.

6The number corresponds to a sum of then�1-th line in the Pascal
triangle.
7Different sources may model URIs differently, however, we as-
sume that at the mediator all URIs are represented in the same way.

636

Note that the nested loop join allows for a more sophisticated
definition of object equality than a common URI comparison. In
particular, if necessary, the basic URI comparison can be comple-
mented by (recursive) comparisons of property values or mapping
look-ups. This offers room to address the issue of URI diversity
also known as the designation problem, when two different URIs
refer to the same real-life object.

DEFINITION 7 (HASH JOIN COST). The processing cost of a
hash join of two relationsp; r is defined asHJCp;r = I � jpj +
R � jrj � B, wherejxj denotes the cardinality of the relationx, I
represents the cost of inserting a path instance in the hash table (the
building factor),R models the cost of retrieving a bucket from the
hash table, andB stands for the average number of path instances
in the bucket.

Unlike the previous join method, the hash join algorithm as-
sumes that the object equality can be determined by a simple URI
comparison, in other words that the URI references are consistent
across the sources. Another difference is that in the case of the
nested loop join for in-memory relations the join commutativity can
be neglected, as the query plan produced from another query plan
by the commutativity law will have exactly the same cost. How-
ever, in the case of the hash join method the order of operands
influences the cost and thus the solution space must also include
those solutions produced by the commutativity law.

DEFINITION 8 (QUERY PLAN COST). The overall cost of a
query plan� consists of the sum of all communication costs and all

join processing costs of the query tree.QPC� =
nP

i=1 TCpi+PC�,

wherePC� represents the join processing cost of the query tree�
and it is computed as a sum of recurrent applications of the formula
in Definition 6 or 7 depending on which join method is utilized. To
compute the cardinality of non-base join arguments, a join selec-
tivity is used. The join selectivity� is defined as a ratio between
the tuples retained by the join and those created by the Cartesian
product:� = jp./rjjp�rj .

As it is not possible to determine the precise join selectivity be-
fore the query is evaluated,� for each sub-path join is assumed to
be estimated and available in the source index hierarchy. After the
evaluation of each query initial� estimates are improved and made
more realistic.

4.3 Heuristics for join ordering
While the join ordering problem in the context of a linear/chain

query can be solved in a polynomial time [12], we have to take into
account the more complex problem when also the explicit joins are
involved which is proven to be NP-hard [15]. It is apparent that
evaluating all possible join strategies for achieving the global opti-
mum becomes quickly unfeasible for a largern. In these cases we
have to rely on heuristics that compute a “good-enough” solution
given the constraints. In fact, this is a common approach for op-
timizers in interactive systems. There, optimization is often about
avoiding bad query plans in very short time, rather than devoting
a lot of the precious CPU time to find the optimal plan, especially,
when it is not so uncommon that the optimal plan improves the
heuristically obtained solutions only marginally.

Heuristics for the join ordering problem have been studied exten-
sively in the database community. In this work we adopt the results
of comparing different join ordering heuristics from [17]. Inspired
from this survey, we chose to apply the two-phase optimization

consisting of the iterative improvement (II) algorithm followed by
the simulated annealing (SA) algorithm [20]. This combination
performs very well on the class of queries we are interested in,
both in the bushy and the right-deep tree solution space, and de-
grades gracefully under time constrains.

The II algorithm is a simple greedy heuristics which accepts any
improvement on the cost function. The II randomly generates sev-
eral initial solutions, taking them as starting points for a walk in
the chosen solution space. The actual traversal is performed by ap-
plying a series of random moves from a predefined set. The cost
function is evaluated for every such move, remembering the best
solution so far. The main idea of this phase is to descent rapidly
into several local minima assuring aforementioned graceful degra-
dation. For each of the sub-optimal solutions, the second phase
of the SA algorithm is applied. The task of the SA phase is to
explore the “neighborhood” of a prosperous solution more thor-
oughly, hopefully lowering the cost.

Algorithm 2 Simulated annealing algorithm

Require: start solutionsSolution
Require: start temperaturesTempr
solution := sSolution
bestSolution := solution
tempr := sTempr
cost := Cost(bestSolution)
minCost := cost
repeat

repeat
newSolution := NEW(solution)
newCost := Cost(newSolution)
if newCost � cost then
solution := newSolution
cost := newCost

else ife�(newCost�cost)
tempr � RAND(0::1) then

solution := newSolution
cost := newCost

end if
if cost < minCost then
bestSolution := solution
minCost := cost

end if
until equilibrium reached
DECREASE(tempr)

until frozen
return bestSolution

The pseudo-code of the SA phase is presented in Algorithm 2.
It takes a starting point/solution from the II phase, and similarly to
II performs random moves from a predefined set accepting all cost
improvements. However, unlike the II, the SA algorithm can accept
with a certain probability also those moves that result in a solution
with a higher cost than the current best solution. The probability of
such acceptance depends on the temperature of the system and the
cost difference. The idea is that at the beginning the system is hot
and accepts easier the moves yielding even solutions with higher
costs. However, as the temperature decreases the system is be-
coming more stable, strongly preferring those solutions with lower
costs. The SA algorithm improves on the II heuristics by making
the stop condition less prone to get trapped in a local minimum; SA
stops when the temperature drops below a certain threshold or if the
best solution so far was not improved in a number of consecutive

637

temperature decrements, the system is considered frozen. There
are two sets of moves: one for the bushy solution space and one for
the right-deep solution space; for details we refer the reader to [20].

Figure 5: Acceptance probability with respect to the tempera-
ture and the cost difference.

Figure 5 shows the acceptance probability dependency in the SA
phase computed for the range of parameters that we used in our ex-
periments. As we adopted the two-phase algorithm our simulations
were able to reproduce the trends in results presented in [17]; due
to the lack of space we omit the detail performance analysis and the
interested reader is referred to the aforementioned survey.

5. RELATED WORK
In this paper we focused mainly on basic techniques such as in-

dexing and join ordering. Relevant related work is described in the
remainder of this section. More advanced techniques such as site
selection and dynamic data placement are not considered, because
they are not supported by the current architecture of the system.
We also do not consider techniques that involve view-based query
answering techniques [6] because we are currently not considering
the problem of integrating heterogeneous data.

5.1 Index Structures for Object Models
There has been quite a lot of research on indexing object oriented

databases. The aim of this work was to speed up querying and nav-
igation in large object databases. The underlying idea of many ex-
isting approaches is to regard an object base as a directed graph,
where objects correspond to nodes, and object properties to links
[16]. This view directly corresponds to RDF data, that is often also
regarded as a directed graph. Indices over such graph structures
now describe paths in the graph based on a certain pattern normally
provided by the schema. Different indexing techniques vary on the
kind of path patterns they describe and on the structure of the index.
Simple index structures only refer to a single property and organize
objects according to the value of that property. Nested indices and
path indices cover a complete path in the model that might contain
a number of objects and properties [2]. In RDF as well as in object
oriented databases, the inheritance relation plays a special role as it
is connected with a predefined semantics. Special index structures
have been developed to speed up queries about such hierarchies and
have recently been rediscovered for indexing RDF data [5]. In the
area of object-oriented database systems, these two kinds of index-
ing structures have been combined resulting in the so-called nested
inheritance indices [3] and generalized nested inheritance indices

[16]. These index structures directly represent implications of in-
heritance reasoning, an approach that is equivalent to indexing the
deductive closure of the model.

5.2 Query Optimization
There is a long tradition of work on distributed databases in gen-

eral [13] and distributed query processing in particular [10]. The
dominant problem is the generation of an optimal query plan that
reduces execution costs as much as possible while guaranteeing
completeness of the result. As described by Kossmann in [10],
the choice of techniques for query plan generation depends on the
architecture of the distributed system. He discusses basic tech-
niques as well as methods for client-server architectures and for
heterogeneous databases. Due to our architectural limitations (e.g.,
limited source capabilities) we focused on join-ordering optimiza-
tion which can be performed in a centralized manner by the medi-
ator. While some restricted cases of this problem can be solved in
a polynomial time [12, 11], the general problem of finding an opti-
mal plan for evaluating join queries has been proven to be NP-hard
[15]. The approaches to tackle this problem can be split into several
categories [17]: deterministic algorithms, randomized algorithms,
and genetic algorithms. Deterministic algorithms often use tech-
niques of dynamic programming (e.g. [12]), however, due to the
complexity of the problem they introduce simplifications, which
render them as heuristics. Randomized algorithms (e.g. [20, 19]),
perform a random walk in the solution space according to certain
rules. After the stop-condition is fulfilled, the best solution found
so far is declared as the result. Genetic algorithms (e.g. [18]) per-
ceive the problem as biological evolution; they usually start with a
random population (set of solutions) and generate offspring by ap-
plying a crossover and mutation. Subsequently, the selection phase
eliminates weak members of the new population.

6. LIMITATIONS AND FUTURE WORK
The work reported in this paper can be seen as a very first step

towards a solution for the problem of distributed processing of RDF
queries. We motivated the overall problem and proposed some data
structures and algorithms that deal with the most fundamental prob-
lems of distributed querying in a predefined setting. We identified
a number of limitations of the current proposal with respect to the
generality of the approach and assumptions made. These limita-
tions also set the agenda for future work to be done on distributed
RDF querying and its support in Sesame.

Implementation Currently, our work on distributed query pro-
cessing is of a purely theoretical nature. The design and evaluation
of the methods described are based on previous work reported in
the literature and on worst-case complexity estimations. The next
step is to come up with a test implementation of a distributed RDF
storage system. The implementation will follow the architecture
introduced in the beginning of the paper and will be built on top of
the Sesame storage and retrieval engine. The implementation will
provide the basis for a more practical evaluation of our approach
and will allow us to make assertions about the real system behavior
in the presence of different data sets and different ways they are
distributed. Such a practical evaluation will be the basis for further
optimization of the methods.

Schema-AwarenessOne of the limitations of the approach de-
scribed in this paper concerns schema aware querying in a dis-
tributed setting. Even if every single repository is capable of com-
puting the deductive closure of the model it contains, the overall

638

result is not necessarily complete, as schema information in one
repository can have an influence on information in other reposito-
ries. This information could lead to additional conclusions if taken
into account during query processing. In order to be able to deal
with this situation, we need to do some additional reasoning within
the mediator in order to detect and process dependencies between
the different models.

Object Identity One of the basic operations of query processing
is the computation of joins of relations that correspond to individual
properties. The basic assumption we make at this point is that we
are able to uniquely determine object identity. Identity is essential
because it is the main criterion that determines whether to connect
two paths or not. From a pragmatic point of view, the URI of an
RDF resource provides us with an identity criterion. While this
may be the case in a single repository, it is not clear at all whether
we can make this assumption in a distributed setting as different
repositories can contain information about the same real world ob-
ject (e.g., a paper) and assign different URIs to it. To deal with this
situation we have to develop heuristics capable of deciding whether
two resources describe the same real world object.

Query Model In order to be able to design efficient index struc-
tures we restricted ourselves to path queries as a query model that
is directly supported. We argued above that tree-shaped queries
can be easily split into a number of path queries that have to be
joined afterwards. Nevertheless, this simplification does not apply
to the optimization part which is capable of processing also differ-
ent query shapes. An important aspect of future work is to extend
our indexing approach to more expressive query models that also
include tree and graph shaped queries which can be found in exist-
ing RDF query languages. It remains to be seen whether the same
kind of structures and algorithms can be used for more complex
queries or whether we have to find alternatives.

Architecture The starting point of our investigation was a par-
ticular architecture, namely a distributed repository where the data
is accessed at a single point but stored in different repositories. We
further made the assumption that these repositories are read-only,
i.e., they only provide answers to path queries that they are known
to contain some information about.

An interesting question is how more flexible architectures can
be supported. We think of architectures where information is ac-
cessed from multiple points and repositories are able to forward
queries. Further we can imagine grid-based architectures where
components can perform local query processing on data received
from other repositories. A prominent example of such more flex-
ible architectures are peer-to-peer systems. This would also bring
a new potential for optimization as peers may collaborate on query
evaluation which in turn may help in reducing both the communi-
cation and processing costs.

7. REFERENCES
[1] P. Bernstein and D. Chiu. Using semi-joins to solve

relational queries.Journal of the ACM, 28:25–40, 1981.
[2] E. Bertino. An indexing technique for object-oriented

databases. InProceedings of the Seventh International
Conference on Data Engineering, April 8-12, 1991, Kobe,
Japan, pages 160–170. IEEE Computer Society, 1991.

[3] E. Bertino and P. Foscoli. Index organizations for
object-oriented database systems.TKDE, 7(2):193–209,
1995.

[4] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A
generic architecture for storing and querying rdf and rdf
schema. InThe Semantic Web - ISWC 2002, volume 2342 of
LNCS, pages 54–68. Springer, 2002.

[5] V. Christophides, D. Plexousakisa, M. Scholl, and
S. Tourtounis. On labeling schemes for the semantic web. In
Proceedings of the 13th World Wide Web Conference, pages
544–555, 2003.

[6] A. Halevy. Answering queries using views - a survey.The
VLDB Journal, 10(4):270–294, 2001.

[7] J. Hendler. Agents and the semantic web.IEEE Intelligent
Systems, (2), 2001.

[8] H. Hsiao, M. Chen, and P. Yu. Parallel execution of hash
joins in parallel databases.IEEE Transactions on Parallel
and Distributed Systems, 8:872–883, 1997.

[9] Y. Ioannidis and E. Wong. Query optimization by simulated
annealing. InACM SIGMOD International Conference on
Management of Data, pages 9–22. ACM:Press, 1987.

[10] D. Kossmann. The state of the art in distributed query
processing.ACM Computing Surveys, 32(4):422–469, 2000.

[11] G. Moerkotte. Constructing optimal bushy trees possibly
containing cross products for order preserving joins is in p,
tr-03-012. Technical report, University of Mannheim, 2003.

[12] K. Ono and G. M. Lohman. Measuring the complexity of
join enumeration in query optimization. In16th International
Conference on Very Large Data Bases, pages 314–325.
Morgan Kaufmann, 1990.

[13] M. Ozsu and P. Valduriez.Principles of Distributed
Database Systems. Prentice Hall, 1991.

[14] D. Rotem. Spatial join indices. InProceedings of
International Conference on Data Engineering, 1991.

[15] W. Scheufele and G. Moerkotte. Constructing optimal bushy
processing trees for join queries is np-hard, tr-96-011.
Technical report, University of Mannheim, 1996.

[16] B. Shidlovsky and E. Bertino. A graph-theoretic approach to
indexing in object-oriented databases. In S. Y. W. Su, editor,
Proceedings of the Twelfth International Conference on Data
Engineering, February 26 - March 1, 1996, New Orleans,
Louisiana, pages 230–237. IEEE Computer Society, 1996.

[17] M. Steinbrunn, G. Moerkotte, and A. Kemper. Heuristic and
randomized optimization for join ordering problem.The
VLDB Journal, 6:191–208, 1997.

[18] M. Stillger and M. Spiliopoulou. Genetic programming in
database query optimization. In J. R. Koza, D. E. Goldberg,
D. B. Fogel, and R. L. Riolo, editors,Genetic Programming
1996: Proceedings of the First Annual Conference, pages
388–393. MIT Press, 1996.

[19] A. Swami. Optimization of large join queries: combining
heuristics and combinatorial techniques. InACM SIGMOD
International Conference on Management of Data, pages
367–376. ACM:Press, 1989.

[20] A. Swami and A. Gupta. Optimization of large join queries.
In ACM SIGMOD International Conference on Management
of Data, pages 8–17. ACM:Press, 1988.

[21] Z. Xie and J. Han. Join index hierarchies for supporting
efficient navigations in object-oriented databases. In
Proceedings of the International Conference on Very Large
Data Bases, pages 522–533, 1994.

[22] C. Yu and W. Meng.Principles of Database Query
Processing for Advanced Applications. Morgan Kaufmann
Publishers, 1998.

639

